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1. Introduction
Forecasting geomagnetic activity is crucial for a variety of
aspects: to safeguard operations in the near-Earth space, e.g.
to protect satellites and space travelers from space radia-
tion, and on the ground, e.g. to ensure correct functioning
of power grids.
The Kp geomagnetic index measures the global levels of
geomagnetic activity driven by solar particle radiation. It
ranges from zero, i.e. variability below noise levels, up to
nine, i.e. extreme geomagnetic storm.
It is widely used, for instance, to parametrize atmospheric,
thermospheric and magnetospheric models.

Figure 1: Kp-index time evolution. The standard colors encode the geo-
magnetic activity levels.

2. Forecast and Data
We use data from spacecraft located around the Lagrange 1
(L1) point. These spacecraft measure solar wind (SW) and
interplanetary magnetic field (IMF) variables, such as solar
wind bulk speed (V ), density of protons (n), magnetic field
components (Bx, By , Bz). Data is collected from the high
resolution OMNI database (1 minute cadance) which con-
tains all the above variables propagated at the position of
the bow shock. The full dataset spans a period of nearly two
solar cycles (1997-current).
The Kp index is obtained from GFZ Section 2.3, has a ca-
dence of 3 hours and it is available starting from 1932.

Figure 2: Example of OMNI solar wind and IMF measurements for the
period 13 November - 25 November 2003) as well as Kp index.

The forecast model looks for a relation between the target
variable y = Kp(t0 + h) and the input variables x(t�0 ) up
the current time t0. The forecast horizon h ranges from zero
(nowcast) up to several days ahead.
The data processing pipeline consists of the following inde-
pendent and ordered steps:
• Time series feature engineering.
• Dimensionality reduction.
• Resampling algorithms (e.g. RANDOM or SMOTE)

Features are obtained by aggregation and statistical anal-
ysis. Each time a raw feature is selected together with
a time window. In this range we evaluate the average,
minimum or maximum values (e.g. hV i[t0�1hour,t0] or
min(n)[t0�3hour,t0�1hour]). Through this method we build
the following data sets:
• Solar wind: solar wind variables before current time t0

and up to 9 hours before.
• Historical Kp: Kp index time series up to 9 hours before

current time t0.
• Recurrence: Kp and dolar wind variables 27 days (1 solar

rotation) and 54 days (2 solar rotations) before the fore-
cast time t0 + h

• Full Model: features of all the previous 3 models com-
bined.

Each of these data sets, if no resampling is applied, contains
about 55k instances. The number of input features depends
on the data set and ranges from few tens to few hundreds
[1,2].

3. Artificial Neural Networks
We use feed-forward artificial neural network regression to
forecast the Kp index at a later time. For this specific appli-
cation a shallow neural network with only one hidden layer
and one output layer is sufficient.
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Figure 3: Schematics of a multilayer perceptron with one hidden layer. Ac-
tivation functions are drawn for each neuron. The xi are the input features,
y is the target, i.e. Kp(t0 + h).
We use the Deep Learning Matlab toolbox with the
Levenberg-Marquardt optimization to train the NNs, which
converges faster and it more accurate than first order ap-
proaches. We train one network for each forecast horizon
h.

4. Long term forecast results
We present a comprehensive picture of the Kp forecast re-
sults using the data sets described in Sec. 2, without resam-
pling or dimensionality reduction. We compare with base-
line models based on persistence, Kp average and solar cy-
cle average [1]. The metric used is the cross-validation (CV)
RMSE.

Figure 4: CV RMSE as a function of forecast horizon in various data models.

• Solar wind model performs best for short term forecast.
• Recurrence model kicks in for long term forecast. Both

outperform the baseline models.
• The Full Model combines the power of both the Solar

wind and Recurrence models.

5. Resampling Kp
The distribution of Kp is unbalanced towards small values.

Figure 5: Kp distribution before (left) and after (right) full rebalancing.

The Neural Network adapts to perform better for small Kp,
ignoring the higher less frequent values. Strategies:

• Weight the neural network error function during training
by penalizing more the errors on high Kp.

• Find more discriminative features (Work in Progress)
• Rebalance (Oversample or Undersample) the data set to

introduce more instances for high Kp.

Figure 6: Effect of oversample rebalancing on Solarwind dataset model in
the performance for quiet times and storm times as a function of forecast
horizon.
The rebalanced model increases the forecast accuracy for
high Kp.

6. Feature Ranking
Machine Learning algorithms allow the user to feed the
model with many input features, since a model internally
could perform feature selection. However understanding
which feature actually contributes the most to the forecast
can lead to a better understanding of the physical processes
in the game. We compare four different approaches:

• Mutual Information Maximimization (MIM).
• Maximum Relevance Minimum Redundance (MRMR).
• Random forest (RF) regression feature importance.
• Fast Function eXtraction (FFX) algorithm coupled with

cross-validation [2,3]. (proposed methodology)

The FFX algorithm builds symbolic expressions ŷ =
f(x1, ....xN ) by combining functions of given functional
space basis. We set up a 50-fold cross validation routine.
For each partition we obtain the best regression function
y = fi(x1, ....xN ). Not every input appears in each expres-
sion. We keep only the features present in all 50 expressions.

Figure 7: Performance comparison on validation sets using neural net-
works trained with selected features by different methods. The FFX feature
selection perfoms marginally better.

7. Uncertainty estimation (Preliminary)
Models of Kp forecast output the best guess for future value
of the index. However forecast models usually also provide
a quantification the uncertainty of the estimated value. As
our first attempt, we train two ensembles of 10 NNs each.
The first uses bootstrapped versions of the training set with-
out replacement, the second uses replacement. We evalu-
ate the RMSE of the average model of both ensembles and
compare it with the standard CV RMSE without bootstrap-
ping. Additionally we attempt to measure the accuracy of
the uncertainty by checking if estimated and real values are,
in average, within an ensemble standard deviation to one
another. To do so we measure the distance between real Kp
and estimated Kp plus/minus one standard deviation.

Figure 8: (Left) comparison between ensemble average RMSE for boot-
strapped and CV RMSE. (Right) Accuracy of uncertainty estimation in
bootstrapped ensembles.
We also implemented MC dropout and Bayesian regulariza-
tion, however without a clear advantage to the above ap-
proach.
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