

MLT radiation scheme developments in the UM

James Manners 14/06/18

- Socrates: A flexible radiative transfer configuration
- Treatment of spherical geometry for direct solar radiation
- Planned extension of Socrates for FUV/EUV photolysis
- Non-LTE: Initial use of Fomichev near-IR and 15μm schemes
- Future developments

Socrates: Suite Of Community RAdiative Transfer codes based on Edwards & Slingo 1996

Includes:

- Two-stream flux code (used to calculate atmospheric heating rates in the UM)
- Spherical harmonics radiance code
- Code to generate correlated-k coefficients
- Code to generate optical properties for Mie scatterers

Met Office

Flexible configuration: spectral files

Spectral bands: high / low resolution

Gas k-terms

Aerosol / cloud optical properties

Solar spectrum (including time variation) etc.

Hot Jupiters

Many configurations can be run

HadCM3

HadGEM1

HadGEM2

GA3

GA7

Mars

300 band LW / 260 band SW

Aim to use the same two-stream solver throughout the atmosphere for:

- Direct radiative heating
- Actinic flux for photolysis
- Non-LTE source functions

Spherical geometry

Plane-parallel vs. spherical geometry

Separate calculation for each layer with changing zenith angle

Plane-parallel vs. spherical geometry

Stratopause (altitude ~ 50km) should be lit ~800km into the "nightside" (an extra hour's daylight on the equator).

Spherical geometry for the direct solar beam.

Plane-parallel geometry for the scattered (diffuse) fluxes.

(The pseudo-spherical approximation.)

Figure 1.2: Spherical shell geometry. Layer centres are denoted by dotted lines and layer edges by solid lines. Parameters are shown for the slant path to a particular layer for a model column located in the position of the dashed line. ζ denotes the local solar zenith angle (which may be greater than 90 degrees), b the impact parameter, and ds the path length element for the layer bounded by radii r_1 and r_2 .

$$S_{up} = \frac{1}{2} [(1 + \cos \zeta \sec \zeta') S'^{+} + (1 - \cos \zeta \sec \zeta') S'^{-}]$$

$$S_{down} = \frac{1}{2} [(1 + \cos \zeta \sec \zeta') S'^{-} + (1 - \cos \zeta \sec \zeta') S'^{+}]$$

Energy balance

h ~ 1% of R

Area increase ~ 2%

Surface area for emission should also increase (to be done)

20-year climate run

b) Outgoing shortwave (TOA) for jja U-AW857: SphGeom minus U-AV674: GA7

 $W m^{-2}$

a) Outgoing shortwave (TOA) for jja

U-AW857: SphGeom

 $W m^{-2}$

Outgoing SW at TOA June-July-August

Dec-Jan-Feb

Zonal mean Temperature June-July-August

Zonal mean Temperature Dec-Jan-Feb

b) Zonal mean Temperature for djf

Far & Extreme Ultra-Violet

upper atmosphere

Photolysis and heating in the

EXOSPHERE

THERMOSPHERE

IONOSPHERE

600 km

300 km

Plan to derive Socrates spectral files for the FUV/EUV (0.05 – 200nm):

- Cross-section data from JPL
- Construct reference file with resolution of 0.1 1nm
- Construct broadband file using correlated-k technique

k-distribution method to bin similar absorption coefficients within each broad band

Broadband options:

- Moderate resolution (safe, slow):
 - Sufficient resolution to capture solar spectral variability
 - Sufficient resolution to provide wavelength dependent photolysis rates
 - Use same bands as Solomon and Qian (2005) in EUV to allow use of their photoelectron process rates
- Low/High resolution (speculative, fast):
 - Small number of bands defined so there is a single major gas in each band
 - Correlated-k: Map wavelengths into absorption coefficient bins
 - Un-map calculated fluxes back to high wavelength resolution and scale by the high resolution solar spectrum
 - Photolysis and heating rates calculated at high wavelength resolution

Calculate Actinic flux using Two-stream approximation

Integrate over up and down directions:

$$F^{\pm} = \int_{\Omega_{\pm}} \cos \theta \ I d\omega_n$$
$$= \frac{1}{D} \int_{\Omega_{\pm}} I d\omega_n$$

Diffusivity factor:

$$D_{\pm} = rac{\int_{\Omega_{\pm}} I d\omega_n}{\int_{\Omega_{\pm}} \cos \theta \ I d\omega_n} = 2 \ ext{if isotropic}$$

Actinic flux:

$$A = \int_{\Omega} Id\omega_n$$
$$= D(F^+ + F^-) + Z$$

Direct beam (using spherical geometry)

Non – Local Thermodynamic Equilibrium

Merge in heating rates from Fomichev 15μm and near-IR schemes ~65km

Figure 1. Total solar heating in the near-IR CO_2 bands for an overhead sun and contributions to it from different CO_2 bands: NIR, total heating due to solar energy absorption in the near-IR CO_2 bands; labels 2.7, 4.3, and 15 refer to the contributions of the 2.7 μ m, 4.3 μ m, and 15 μ m bands, respectively (see text for details); and NIR(LTE), the same as NIR but in the case of LTE. A tropical atmosphere and a CO_2 concentration of 360 ppm are considered.

Comparison between Socrates LTE and Fomichev non-LTE cooling (pressure scale is natural log, helpfully!)

Future extension of Socrates for non-LTE:

- Eventually plan to replace Fomichev schemes with Socrates non-LTE treatment run consistently through whole atmosphere.
- First run for absorption of solar radiation and divide flux between direct heating and contributions to source functions at other wavelengths.
- Then run for thermal emission using a non-LTE source function (which becomes Planckian under LTE conditions).

Speculative... more research needed!

Questions