

Met Office

Extending the UM into the thermosphere SWAMI – a project to develop a European whole atmosphere model for improved satellite operations

David Jackson

david.jackson@metoffice.gov.uk

Emily Down, James Manners, Dan Griffin⁽¹⁾, Matt Griffith⁽²⁾, Chris Kelly⁽³⁾

⁽¹⁾Exeter, ⁽²⁾Bath, ⁽³⁾Leeds,

Whole Atmosphere Modelling Workshop, Tres Cantos, 13-15 June 2018

- Met Office Space Weather Operations Centre (MOSWOC)
 - Ambition for Sun to Earth modelling & motivation for a Whole Atmosphere Model
- Extending the Met Office UM into the lower thermosphere
 - SWAMI project
 - Radiation, chemistry and dynamics
- Road map towards a coupled S2E models and whole atmosphere model

Met Office Met Office Space Weather Met Office Operations Centre (MOSWOC)

• 24/7 Operations

- Fully integrated within Met Office Operations Centre
- National capability supporting government, military, and critical sectors
- Team includes
 - Space Weather Operational Meteorologists
 - Scientists
 - Programme managers
 - IT developers

- Set up in response to NRR: Met Office owns risk
- UK Government (BEIS funds) operations and associated research via rolling programme
- This funding is for R2O so does not include Whole Atmos modelling

Toward Sun-Earth coupled modelling

• Solar wind (interplanetary space) MagnetosphereRadiation belts

Photosphere (solar surface)
Corona (solar atmosphere)

> •Upper / lower atmosphere coupling (via whole atmosphere UM)

•Thermo / ionosphere coupling • Thermosphere • Middle and Lower atmosphere

lonosp

GOAL: Coupled Sun-to-Earth models with DA for much-enhanced forecast capacity

A Whole Atmosphere Model

Met Office

Reasons:

- Important role of lower level driving in thermospheric state – improved mean state and better representation of variability
- Lack of thermosphere obs means that lower level driving could be like "free DA"
- State of the thermosphere important for ionospheric evolution
- Impacts of space weather on tropospheric weather and climate

Surface T (high Kp – low Kp) from Seppala et al (2009)

Immel et al, (2006l)

Chartier et al (2013)

Whole Atmosphere Modelling

© Crown copyright Met Office

The Unified Model (UM)

Met Office

- All WA / thermos models (except GITM) use hydrostatic dynamical cores.
- Hydrostatic assumption assumes vertical velocity is negligible – poor assumption in the thermosphere (e.g. Larsen and Meriwether, 2012)
- □ Most other models also use a shallow atmosphere approximation $(g \neq g(z)), r=a)$
- The UM has a deep atmosphere, non-hydrostatic dynamical formulation. This should lead to
 - considerably more accurate modelling of vertical velocities (and air density) in the thermosphere than existing, hydrostatic, models.
 - Different interaction between dynamics, radiation and chemistry (possibly benefiting the more accurate dynamics)
- This non-hydrostatic formulation will also make the UM unique amongst surface to thermosphere-spanning models.

Vertical levels: 0-~85 km resolution: ~100m near surface; 4-8 km at top

Extending the UM

Met Office

- Aim is Whole Atmosphere UM (+ ionosphere) as part of coupled S2E modelling system
- Huge task, so focus first on UM to ~120-170 km ("Extended UM")
 - Add relevant physics & chemistry
 - Dynamical robustness
 - Verification.
 - Enable coupling with TIEGCM (~97-600 km) pushes any ionospheric development to later
 - Meet goals of Met Office and SWAMI project

Towards Extended UM building blocks

- In SWAMI project aim is to blend Extended UM with DTM around ~150-170 km
- We will
 - Add non-LTE to fix too-large UM heating rates above 70 km
 - Add FUV/EUV radiation schemes for chemical scheme photolysis rates
 - Enhance chemistry scheme => exothermic chemical heating for large rise in T in MLT
 - Dynamics stability
 - Build all these changes into a stable version

Zonal mean SW

Fomichev non LTE

Blending heating rates

The longwave (LW) heating rates are combined as

- $p_x < 0.1$ Fomichev NLTE scheme Height $< 65 \mathrm{km}$
- $p_x \ge 0.1$ UM LTE scheme Height $\ge 65 \mathrm{km}$

Status:

- recoding to meet UM coding standards
- IR nearly done; NIR to follow
- Will be made widely available via SOCRATES

Need to derive Socrates spectral files for the FUV/EUV (0.05 – 200nm)

Extension to spherical geometry already done To do

- Cross-section data from JPL
- Construct reference file with resolution of 0.1 1nm
- Construct broadband file using correlated-k technique
- Calculate actinic fluxes => photolysis rates

Chemistry

Met Office Chemical heating dominant in MLT in determining T structure

[QUV and QEUV: thermalized radiation, AURORA: thermalized energy from EPF (Marsh et al, 2007)

- Current UM chemistry (UKCA) runs up to mesopause but with trop / stratosphere focus
- Chris Kelly (Leeds) developing neutral and ion chemistry for UKCA. Motivations:
 - Can study impact of EPP on stratosphere and troposphere
 - Will improve MLT simulation (exothermic heating)
 - Examining new source of NOx in WACCM MLT
 - Starting UKCA work with 5 species Na ion chemistry (data for validation available) See Chris Kelly's talk

© Crown copyright Met Office

Dynamical Stability – simply lift the lid and go..

- If we lift the lid of the full UM to 100 km it can run OK for a few months (or for > 1 year if timestep halved), but issues appear
 - Unrealistic local wind structure
 - Issue with lack of non-LTE?
 - Issue with GW parametrization?
- With lid in 105-120 km region, UM fails in days to weeks

Zonal mean SW and LW heating – Fomichev (2009)

See Matt Griffith's talk

© Copyright 2018 as per SWAMI Consortium Agreement

Dynamical Stability – modification of ENDGame dynamical core

Acoustic waves are most challenging to model - but can be important

In its current form, ENDGame becomes unstable if the top model boundary is lifted above ~ 120 km (idealised tests)

- Molecular viscosity is realistic wave damping mechanism important >~ 130 km (t/scale < wave growth t/scale)
- Its addition reduces acoustic wave amplitude above ~130 km (resolved GWs at sl lower levels)

Figure 9: Latitude-Altitude plots at 45° longitude of vertical velocity w after 1 day for a baroclinic wave test with (left) the original formulation and (right) the new formulation with molecular viscosity and diffusion.

Other Considerations

- Joule heating (NOx cooling) also important for high latitude thermospheric T, especially when there are very strong geomagnetic storms
 - For this we need electric field model. But outside SWAMI project scope / resources
 - We can include this by coupling to TIEGCM (UM / TIEGCM coupling code already there).
- GWs need to be parametrized, since UM horizontal resolution used here will be too coarse (O(100-200km)).
 - Existing UM GW scheme(USSP) may need to be tuned – lower level simulations can be sensitive to scheme settings.
 - May experiment with switching off or strongly damping the scheme near / around turbopause (~100-120 km) instead of applying it right to the top of UM.

Longer term plans

dynamical equations, decision on ionosphere model, implications of even newer DyCore

- Whole Atmosphere UM important part of coupled Sun to Earth system:
 - better lower / upper atmosphere coupling => improved thermosphere / ionosphere
- Initial focus on Extended UM:
 - Range of projects on dynamics, chemistry and radiation
 - SWAMI provides resources and focus leading to 1st stable, verified Extended UM version
- Pathway to Whole Atmosphere (full thermosphere / ionosphere) UM and coupled S2E modelling system.

Extra slides

Basic states in absence of radiation and chemistry

- •First cut at blending UM and DTM (to create MOWA) will be summer 2019
- •By then we should have completed
 - Non-LTE radiation
 - •Molecular viscosity re-coding into full UM
 - •Some tuning of USSP / other parameters for better model stability
- •However, FUV / EUV not likely to be complete
- •Chemistry changes may not be complete
- •So we have written code to relax UM to a realistic basic state while awaiting radiation / chemistry devs
- •Also provides more accurate basic state for testing
 - •Global mean T based on USSA/CIRA and asymptotic relaxation to specified exobase T
 - •Follows nudging approach (eg Telford et al, 2008)

