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Abstract
The Kp index is a global measure of geomagnetic activity and it represents 
short-term magnetic variations driven by space weather. The Kp index is 
used as an input to various thermosphere and radiation belt models, and it 
is therefore important to predict it accurately. In this study, we 
systematically test how different machine learning techniques 
(Feedforward Neural networks, Gradient Boosting, and Linear 
Regression) perform on the task of nowcasting and forecasting Kp for 3, 
6, and 9 hours prediction horizons. Additionally, we investigate two feature 
selection schemes based on Mutual Information and Random Forest. 
Finally, we evaluate and report the optimal combinations of input 
parameters and the best performing machine learning model.

Performance of different ML methods

Comparison of Mutual Information and Random Forests for feature selection
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Table 2. Features selected by MI 
and RF (in the order of importance).

h = 0 (past), h = 0 h = 3 h = 6 h = 9

Bzavg,0-3, 3-6, 6-9 
Bzmin,0-3, 3-6, 6-9 
Bzmax,0-3, 3-6, 6-9 
Bavg,0-3, 3-6, 6-9 
Bmin,0-3, 3-6, 6-9 
Bmax,0-3, 3-6, 6-9 
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Vswavg, 9-12, 12-15, 15-18 

nProtavg, 9-12, 12-15, 15-18 

sin(T), cos(T),  
sin(D), cos(D) 

Table 1. Optimal inputs to the models derived from the CV procedure.

T = 2π * (UT hour) / 24 

D = 2π * (UT DoY) / 365,  

DoY = day of year

Training setup
• 5-fold cross-validation (CV) with 10 

repeats. 
• Data are first split into 35-day 

chunks sequential in time. 
• Separately from that, test set is left 

aside comprising 10%.

Time,  
hours

0           3           6          9 …

“past” or “back”

Model (h=0, past) RMSE CC
Wintoft et al., 2017 0.55 0.92
Wing et al., 2005 - 0.92

Resulting models

Correlation between the observed Kp and predicted values by the neural 
network model for all data (combined training, validation, and test sets). 

Examples of Kp prediction for different horizons.

• We have explored how three different algorithms (Neural Networks, Gradient 
Boosting, Linear Regression) perform on the task of predicting the Kp index 
for 5 different prediction horizons (up to 9 hours), and assessed the 
performance of the two feature selection methods based on Mutual 
Information and Random Forests. 

• Neural networks outperformed other models. Models based on the features 
selected by Random Forest perform similarly to the models based on 
features selected using the domain knowledge, while the input space is 
significantly reduced using the RF feature selection (models can be trained 
faster).

Conclusions
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