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1. MODEL DEVELOPMENT METHODS PERFORMANCE

Training setup

• 5-fold cross-validation (CV) with 

10 repeats.

• Data are first split into 35-day 

chunks sequential in time.

• Separately from that, test set is 

left aside comprising 10%.(early)

Input data

Averages, min, and max of: 

• solar wind speed, 

• proton density, 

• IMF B, 

• IMF Bz over 0-3, 3-6, 6-9 hours.

over 1998-2017 from OMNIWeb.
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Neural Networks outperform other methods



2. INPUT SELECTION METHODS PERFORMANCE

(early)
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Random Forest helps find optimal inputs and reduce input space
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CONCLUSIONS

• We have explored how three different algorithms (Neural Networks, Gradient 

Boosting, Linear Regression) perform on the task of predicting the Kp index for 5 

different prediction horizons (up to 12 hours), and assessed the performance of the 

two feature selection methods based on Mutual Information and Random Forests.

• Neural networks outperformed other models. Models based on the inputs selected 

by Random Forest perform similarly to the models based on the inputs selected 

using the domain knowledge, while the input space is significantly reduced using 

the RF input selection (models can be trained faster).

• More information about validation of Kp predictive models in C0.1-005-18 on 

Thursday, 19 July, 15:15-15:30.
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METHODOLOGY

Inputs

Time history of 

(1) solar wind speed, 

(2) proton density, 

(3) IMF B, 

(4) IMF Bz.

Kp prediction

Kp index

Output

• Methodology: neural network based empirical modelling.

• Data: solar wind and IMF data from ACE (available at OMNIWeb), Kp 

index from GFZ Potsdam, 1993 - 2017.
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PRELIMINARY RESULTS

CC=0.92



METHODOLOGY

Neural 

networks

Training data

Input: Averages, min, 

and max of (1) solar 

wind speed, (2) proton 

density, (3) IMF B, 

(4) IMF Bz over 0-3, 3-

6, 6-9 hours.

Output: Kp index.

• Methodology: neural network based empirical modelling.

• Data: solar wind and IMF data from ACE (available at OMNIWeb), Kp 

index from GFZ, 1993 - 2017.

• Model (input and internal neural network parameters) selection: 

nested cross validation.

Kp prediction



MODEL PERFORMANCE

Example of Kp prediction for 17 Nov - 01 Dec 2003 

(out of training sample)

• Correlation coefficient 

between observed 

and predicted Kp on 

the training, 

validation, and test 

sets = 0.92.

• RMSE on the 

training, validation, 

and test sets = 0.55, 

0.55 and 0.56.
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NEURAL NETWORKS LEARN FROM DATA…
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